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The failure envelopes of brittle honeycombs are affected by the cell-wall modulus of
rupture. The variability in the cell-wall modulus of rupture is accounted for by assuming
that it follows a Weibull distribution, giving the corresponding modulus of rupture for a
prescribed survival probability. Furthermore, the existing model for the failure envelopes of
honeycombs under in-plane biaxial loading is modified to take into account the effect of
variability in the cell-wall modulus of rupture. Consequently, the failure envelopes of brittle
honeycombs with a prescribed survival probability are developed. The effects of cell size,
Weibull modulus and prescribed survival probability on the failure envelopes of brittle
honeycombs are also evaluated. C© 1999 Kluwer Academic Publishers

1. Introduction
Cellular materials are increasingly used in many en-
gineering applications such as thermal insulation, en-
ergy absorption and fire resistance. Meanwhile, cellu-
lar materials are typically used as lightweight cores in
sandwich structures, especially for load-bearing com-
ponents. In practice, ceramic cellular cores are prefer-
able because of their high creep resistance and low ther-
mal conductivity. For example, sandwich panels with a
cement foam core and gypsum faces are widely utilized
in building construction. However, pre-existing flaws
within ceramic cellular materials resulting mainly from
processing or machining might reduce their loading ca-
pacity and thus limit their application. At the same time,
the tensile and compressive strengths of ceramic cellu-
lar materials are significantly influenced by the flaw
size distribution within them. As a result, the strength
variability in ceramic cellular materials is expected and
can be observed from experiments.

In most cases, cellular materials in real engineering
structures are subjected to a general multiaxial state
of stress. Various failure mechanisms might occur for
brittle cellular materials under multiaxial loading, de-
pending on the properties of solid cell walls. Account-
ing for the cell-wall strength variability, brittle cellu-
lar materials could have different failure mechanisms
and resulting failure envelopes which are essential to
the designer. Therefore, the failure envelopes for brit-
tle cellular materials under multiaxial loading need to
be fully exploited in order to suggest ways of enhanc-
ing micro-structural design and material selection for
lightweight structures. Here, we aim at analyzing the
failure envelopes for brittle honeycombs under in-plane
biaxial loading due to the simple, repeated and regular
cell geometry in honeycombs. The results can provide a
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guideline in analyzing the multiaxial failure envelopes
for brittle foams with more complicated cell geometry.

Gibsonet al. [1] observed that bending moment dom-
inates cell-wall deformation in honeycombs. Based on
their cell-wall bending model, the in-plane linear elas-
tic properties of honeycombs were calculated and found
to be consistent with experimental measurements. For
honeycombs in uniaxial compression, cell walls fail
either by elastic buckling when the maximum com-
pressive stress exceeds their Euler buckling load or
by crushing when the maximum tensile stress exceeds
their modulus of rupture [1–8]. By assuming a con-
stant cell-wall modulus of rupture, the compressive
crushing strength of honeycombs was described well
by the cell-wall bending model proposed by Gibson
and Ashby [9]. Elastic-buckling modes and combined
elasto-plastic crushing for honeycombs were derived by
Klintworth and Stronge [10]. For honeycombs in uniax-
ial tension, pre-existing cracks might cause catastrophic
failure at a tensile stress much less than the compres-
sive crushing strength. Maitiet al. [11] derived the ex-
pression for mode I fracture toughness of honeycombs
based on the near-tip singular tensile stress of a contin-
uum model. They found that the fast fracture strength
of honeycombs depends on cell size, relative density,
and cell-wall modulus of rupture.

When honeycombs are under in-plane biaxial load-
ing, various failure mechanisms including elastic buck-
ling, plastic yield and fast fracture were studied by Gib-
sonet al. [12]. They developed equations describing the
failure surfaces for honeycombs under in-plane biaxial
loading. Huang and Lin [13] analyzed the mixed mode
fracture for honeycombs under a combined loading of
uniform tensile and in-plane shear stresses, resulting
in a linear mixed-mode fracture criterion. The above
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studies assumed a constant cell-wall modulus of rup-
ture, suitable for ductile honeycombs. In fact, the cell-
wall modulus of rupture in brittle honeycombs may vary
from one specimen to another, exhibiting strength vari-
ability. The strength variability in the cell-wall modulus
of rupture should be taken into account in developing
the failure envelopes for brittle honeycombs under in-
plane biaxial loading.

Weibull [14] proposed an empirical formulation with
a simple statistic distribution to describe the strength
variability in brittle materials such as concrete, wood
and glass fiber. It was found that a brittle solid with a
larger volume possesses a lower tensile strength than
that with a smaller volume; the difference in tensile
strengths depends on the brittleness of the solid, namely
the Weibull modulus. Jayatilaka and Trustrum [15] ver-
ified that the empirical Weibull modulus is related to the
properties of cracks and flaws size distribution within
brittle solids. In addition, the survival probability of
a brittle solid subjected to a non-uniform tensile stress
can be calculated from the Weibull statistic analysis. For
example, Jayatilaka [16] calculated the survival prob-
ability of a brittle solid beam under bending moment
loading using the Weibull statistic analysis. Huang and
Gibson [17] found that the cell-wall modulus of rupture
of brittle cordierite honeycombs was described well by
the Weibull statistic analysis with a Weibull modulus
of 6. Also, the cell-wall modulus of rupture depended
on the volume of the cell wall, leading to a cell size
effect. A similar cell size effect on the mode II frac-
ture toughness of brittle honeycombs was presented by
Huang and Lin [13].

In this paper, the strength variability in the cell-wall
modulus of rupture is first studied using the Weibull
statistic analysis. Then, the failure surfaces character-
izing brittle crushing and fast brittle fracture for brit-
tle honeycombs with a prescribed survival probability
are developed. Finally, the failure envelopes of brittle
honeycombs are plotted for various prescribed survival
probabilities, cell sizes and Weibull moduli.

2. Survival probability of brittle solid
cell walls

A typical honeycomb with a cell wall thicknesst , an
inclined cell length`, a vertical cell lengthh, a cell
angleθ and a honeycomb widthb is shown in Fig. 1a.
For simplicity, the principal stresses are assumed to be
aligned with thex1 andx2 axes. When the honeycomb
is subjected to in-plane biaxial remote stressesσ ∗1 and
σ ∗2 , the forces and moments exerted on an individual
inclined cell wall are shown in Fig. 1b. Equilibrium re-
quires thatW = σ ∗2 `bcosθ , P = σ ∗1 (h+ ` sinθ )b and
Mo = (P` sinθ −W` cosθ )/2. The external moment
exerted on any cross-section at a distance ofx measured
from one end of the solid cell wall beam is:

M = M0− P(`− x) sinθ +W(`− x) cosθ

= (P sinθ −W cosθ )

(
x − `

2

)
(1)

(a)

(b)

Figure 1 (a) An infinite honeycomb plate with a cell wall thicknesst ,
an inclined cell length̀ , a vertical cell lengthh, a cell angleθ and a
honeycomb widthb under in-plane biaxial loading. (b) The forces and
bending moments exerted on an individual inclined cell wall.

The normal stress at a distance ofy from the neutral
axis of the solid cell wall beam can be calculated from
the elementary mechanics of materials:

σn = My

I
= 12(P sinθ −W cosθ )

(
x − `

2

)
y

bt3
(2)

Here I = bt3/12 is the moment of inertia of the solid
cell wall beam.

For a brittle solid with a volume ofV subjected to
a non-uniform tensile stress, the failure probability of
the solid can be calculated from the Weibull statistic
analysis [14,16]:

Pf = 1− exp

[
−
∫

V

(
σs

σ0

)m dV

V0

]
(3)

HereV0 is a unit volume (namely, 1 cm3 or 1 mm3), σs

is the normal tensile stress acting at any point within
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the solid,σ0 is a scale parameter andm is the Weibull
modulus. The magnitude of the Weibull modulus de-
scribing the brittleness of the solid depends on the flaw
size distribution within it; a solid with a smallerm is
more brittle. It should be noted that only tensile stresses
within the solid are taken into account in calculating the
failure probability of Equation 3.

In most honeycombs, the tensile stress of an indi-
vidual inclined cell wall caused by bending moment is
much larger than that either by shear or by axial forces.
For simplicity, the failure probability of the solid cell-
wall beam can be obtained by substituting Equation 2
into 3, giving:

Pf = 1− exp

{
−
∫

V

[
12(P sinθ −W cosθ )

bt3σ0

×
(

x − `
2

)
y

]m}dV

V0

= 1− exp

{
−2b

V0

[
12(P sinθ −W cosθ )

bt3σ0

]m

×
∫ `

x=`/2

∫ t/2

y=0

(
x − `

2

)m

ym dx dy

}
= 1− exp

{
− 1

2(m+ 1)2

(
V

V0

)
×
[

3(P sinθ −W cosθ )`

bt2σ0

]m}
(4)

SinceW = σ ∗2 `bcosθ andP = σ ∗1 (h + ` sinθ )b, the
above equation can be rewritten as:

Pf = 1− exp

{
− 1

2(m+ 1)2

(
V

V0

)(
3
`2

t2

)m
[
(h/`

+ sinθ ) sinθ

(
σ ∗1
σ0

)
− cos2 θ

(
σ ∗2
σ0

)]m}
(5)

The maximum tensile stress of the solid cell-wall beam
occurs at its both ends:

σmax= M0(t/2)

bt3/12
= 3

`2

t2

[
σ ∗1 (h/`+ sinθ ) sinθ

− σ ∗2 cos2 θ
]

(6)

By substituting Equation 6 into 5, the survival proba-
bility of the solid cell-wall beam can be expressed as:

Ps = 1− Pf = exp

{
− 1

2(m+ 1)2

(
V

V0

)(σmax

σ0

)m}
(7)

When the maximum tensile stress reaches the cell-
wall modulus of ruptureσ f s, failure occurs. By setting
σmax = σ f s in Equation 7, the survival probability of
the solid cell-wall beam becomes:

Ps = exp

{
− 1

2(m+ 1)2

(
V

V0

)(
σ f s

σ0

)m}
(8)

Therefore, the corresponding cell-wall modulus of rup-
ture for a prescribed survival probabilityPs is found
to be:

σ f s =
[
2(m+ 1)2

(
V0

b`2

)(
`

t

)
log

(
1

Ps

)]1/m

σ0

(9)

Here the volume of the solid cell-wall beam isV = `bt.
From Equation 9, it is known that the cell-wall modu-
lus of rupture in brittle honeycombs is not a constant,
depending on the cell-wall volume, the material param-
etersm andσ0 of solid cell walls, and the prescribed
survival probability.

The mean modulus of rupture of the solid cell wall
beam can be calculated from Equation 8 and found
to be:

σ f s =
∫ ∞

0
Psdσ f s=

∫ ∞
0

exp

[ −1

2(m+ 1)2

(
V

V0

)
×
(
σ f s

σ0

)m]
dσ f s

= σ0

[
2(m+ 1)2

(
V0

V

)]1/m

0

(
1+ 1

m

)
(10)

Here0(1+m−1) is the gamma function. Then, the ratio
of the cell-wall modulus of rupture for a prescribed
survival probability and the mean cell-wall modulus of
rupture is:

σ f s

σ f s
= [log(1/Ps)]1/m

0(1+ 1/m)
(11)

The ratio depends on the prescribed survival probability
and the Weibull modulus of solid cell-wall materials.

3. Survival probability of brittle honeycombs
The existing model for the failure envelopes of hon-
eycombs under in-plane biaxial loading [12] will be
modified to take into account the effect of variability
in the cell-wall modulus of rupture. For brittle hon-
eycombs under in-plane biaxial loading, three failure
mechanisms are possible and will be considered here:
brittle crushing, fast brittle fracture and elastic buck-
ling. The mechanism of failure for brittle honeycombs
depends on stress state. Since the cell-wall modulus of
rupture is not a constant, the failure envelopes of brittle
honeycombs will be also affected by prescribed survival
probability and Weibull modulus of solid cell walls.

3.1. Brittle crushing
When a brittle honeycomb is under in-plane biaxial
loading, the axial force acting on any cross-section of
an individual inclined cell wall isN = −(P cosθ +
W sinθ ). Then, the resulting uniform axial stress is:

σa = N

bt

= −[σ ∗1 (h/`+ sinθ ) cosθ + σ ∗2 cosθ sinθ
](`

t

)
(12)
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The critical skin stress occurs at both ends of the cell
wall, contributed from both bending moment and ax-
ial force; the effect of shear force is negligible. Brit-
tle crushing occurs when the critical skin tensile stress
reaches the cell-wall modulus of rupture for a given
survival probability. Hence, the maximum tensile stress
resulting from bending moment at failure isσ f s − σa;
the bending moment can be either positive or negative.
From Equations 6, 9 and 12, the failure remote stresses
for brittle crushing are found to be:

±3

(
`

t

)2 [
σ ∗1 (h/`+ sinθ ) sinθ − σ ∗2 cos2 θ

]
+
(
`

t

) [
σ ∗1 (h/`+ sinθ ) cosθ + σ ∗2 cosθ sinθ

]
= σ0

[
2(m+ 1)2

V0

b`2

(
`

t

)
log

(
1

Ps

)]1/m

= σ f s
[log(1/Ps)]1/m

0(1+ 1/m)
(13)

The relative density of the honeycomb (the density of
the honeycomb divided by that of the solid from which it
is made) is proportional to the ratio of the cell wall thick-
ness to length,t/`. From Equation 13, it is known that
the failure remote stresses for brittle crushing depend
on the cell size, relative density and Weibull modulus of
the honeycomb, and the prescribed survival probability.

3.2. Fast brittle fracture
Fig. 2 illustrates a brittle honeycomb plate with a central
macro-crack,c, subjected to a uniform remote tensile
stressσ ∗2 in thex2 direction. The tensile strength of the
brittle honeycomb will be much lower than its brittle
crushing strength due to the stress concentration effect
around the crack tip. The continuum model proposed by
Maiti et al. [11] is utilized here to calculate the tensile

Figure 2 An infinite brittle honeycomb plate with a central macrocrack
c under a uniform remote tensile stressσ ∗2 in thex2 direction.

strength of the brittle honeycomb. A singular stress field
develops ahead of the crack tip, giving a local stress of:

σLocal = σ ∗2
√
πc√

2πr
(14)

wherer is the distance ahead of the crack tip. The bend-
ing moment exerted on the first unbroken cell wall along
the macrocrack plane is then:

M2 =
∫ ` cosθ

0
σLocalb(` cosθ − r )dr

= 4

3
√

2
σ ∗2 b
√

c(` cosθ )3/2 (15)

The critical tensile stress on the first unbroken cell wall
is:

σcritical = M2(t/2)

bt3/12
= 4
√

2σ ∗21(` cosθ )3/2√c

t2
(16)

When the critical tensile stress exceeds the cell-wall
modulus of rupture for a prescribed survival probability,
the first unbroken cell wall fractures and the macrocrack
advances one cell size distance, giving the remote stress
σ ∗2 at failure:

σ ∗2 = σ0

[
2(m+ 1)2

(
V0

b`2

)(
`

t

)
log

(
1

Ps

)]1/m

× 1

4
√

2 cos3/2 θ

(
t

`

)2
√
`

c

= σ f s
[log(1/Ps)]1/m

0(1+ 1/m)

1

4
√

2 cos3/2 θ

(
t

`

)2
√
`

c

(17)

Similarly, the remote stressσ ∗1 at failure in thex1 di-
rection can be obtained:

σ ∗1 = σ0

[
2(m+ 1)2

(
V0

b`2

)(
`

t

)
log

(
1

Ps

)]1/m

× 1

2(h/`+ sinθ )3/2

(
t

`

)2
√
`

c

= σ f s
[log(1/Ps)]1/m

0(1+ 1/m)

1

2(h/`+ sinθ )3/2

×
(

t

`

)2
√
`

c
(18)

Again, the remote stressesσ ∗1 andσ ∗2 at failure depend
on the Weibull modulus, cell size, relative density of the
honeycombs, and the prescribed survival probability.

3.3. Elastic buckling
Brittle honeycombs under either uniaxial or biaxial
compressive loading might fail due to the bucking of
one set of cell walls loaded axially up to their Euler
buckling load. The biaxial remote stresses in Fig. 1a
produce an axial load on the vertical cell wall of
2σ ∗2 `bcosθ . When the axial load reaches the Euler
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TABLE I EndConstraint factorn2 for elastic buckling of honeycombs
[12]

σ ∗1 /σ
∗
2 n2 (mode 1) n2 (mode 2)

0 0.44 —
1/3 0.419 0.648
1/2 0.407 0.547
1 0.370 0.370
2 0.306 0.222
3 0.269 0.156

buckling load, elastic buckling occurs, giving the buck-
ling strength of the honeycomb:

σ ∗2,Buckling =
n2π2Est3

24̀ h2 cosθ
= n2π2

24(h/`)2 cosθ
Es

(
t

`

)3

(19)

HereEs is the elastic modulus of solid cell walls. End
constraint factorn2 depends on stress state and buckling
mode; Gibsonet al. [12] presented a full analysis for
two possible buckling modes and the corresponding end
constraint factor for various biaxial stress states.

Since the Euler buckling load depends only on the
elastic modulus and slenderness of the individual cell
walls, the buckling strength of the honeycomb will not
be affected by the Weibull modulus of solid cell walls
and the prescribed survival probability. The end con-
straint factors for regular hexagonal honeycombs un-
der biaxial loading suggested by Gibsonet al. [12] are
listed in Table I and will be utilized to construct the
failure envelopes for brittle honeycombs.

4. Discussions
Based on the above analysis, it is found that the cell-wall
modulus of rupture in brittle honeycombs depends on
the volume and Weibull modulus of solid cell walls, and
the prescribed survival probability. Consider two brit-
tle honeycombs made from the same solid material but
with different cell size, relative density and prescribed
survival probability;̀ 1, t1/`1 andPs,1 for honeycomb 1
while `2, t2/`2 andPs,2 for honeycomb 2. From Equa-
tion 9, the ratio of the cell-wall moduli of rupture for
the two honeycombs is found to be:

σ f s,1

σ f s,2
=
[(

b`2t2
b`1t1

)
log

(
Ps,2

Ps,1

)]1/m

=
[(

`2

`1

)2( t2/`2

t1/`1

)
log

(
Ps,2

Ps,1

)]1/m

(20)

Both honeycombs have the same width ofb. It is noted
that the cell-wall modulus of rupture increases with de-
creasing cell size, relative density and prescribed sur-
vival probability. In other words, brittle honeycombs
with a lower prescribed survival probability, a smaller
cell size and a lower relative density will possess a
larger cell-wall modulus of rupture. Sincem is larger
than zero, the ratio in Equation 20 decreases when the
Weibull modulus becomes larger. Equation 20 also indi-
cates that the cell-wall modulus of rupture is a constant

regardless of prescribed survival probability, cell size
and relative density as the Weibull modulus approach-
ing infinity for ductile honeycombs.

From Equations 13, 17, 18 and 19, it is known that
the failure stresses for brittle crushing and fast brit-
tle fracture in brittle honeycombs are affected by cell
size, relative density, Weibull modulus and prescribed
survival probability while those for elastic buckling
are only influenced by relative density. To investi-
gate the effect of prescribed survival probability on
the failure surfaces for brittle honeycombs under in-
plane biaxial loading, the Weibull modulus is first kept
fixed and three different prescribed survival probabil-
ities of 0.2, 0.5 and 0.8 are considered here. The re-
sulting failure envelopes are plotted in Figs 3–6 for
brittle honeycombs with a Weibull modulus of 2, 4, 8
and 100, respectively. In the figures, the cell geometry
and material properties of brittle honeycombs are as-
sumed to be:h/`=1, θ =30◦, c/`=2, t/`=0.1 and
σ f s/Es=0.01. From Figs 3–5, it is seen that the area
contained within the failure envelopes for brittle hon-
eycombs with a higher prescribed survival probability
is smaller than that with a lower prescribed survival
probability. For a brittle honeycomb with a higher pre-
scribed survival probability, the cell-wall modulus of
rupture will be smaller. As a result of that, the brit-
tle honeycomb under a given biaxial stress state will
be more likely to fail, giving a smaller area contained
within the failure envelope.

From Figs 3–6, it is also seen that the difference be-
tween the areas contained within the failure envelopes
for various survival probabilities becomes smaller as
the Weibull modulus increases. That is, for a prescribed
survival probability, the failure stresses for honeycombs
with same cell size and relative density but with a
smaller Weibull modulus will scatter more widely than
those with a larger Weibull modulus. It is expected that
the failure envelopes will come close to a set of inter-
secting lines when the Weibull modulus becomes much
larger as shown in Fig. 6 for honeycombs with same
Weibull modulusm= 100 but different prescribed sur-
vival probabilities.

Since the cell-wall modulus of rupture depends on
its volume, the biaxial failure stresses are different for
brittle honeycombs with various cell sizes even though
they have same cell geometry and relative density. For
instance, two brittle honeycombs have the same relative
density, Weibull modulus and prescribed survival prob-
ability but different cell size; namely,t1/`1= t2/`2 =
t/`, h1/`1 = h2/`2 = h/`, θ1 = θ2 = θ,m1 = m2 =
m and Ps,1 = Ps,2 but `1 6= `2. The failure stresses
for brittle crushing in honeycomb 1 can be expressed
in terms of the cell-wall modulus of rupture in honey-
comb 2,σ f s:

±3

(
`

t

)2[
σ ∗1 (h/`+ sinθ ) sinθ − σ ∗2 cos2 θ

]
+
(
`

t

)[
σ ∗1 (h/`+ sinθ ) cosθ + σ ∗2 cosθ sinθ

]
= σ f s

(
`2

`1

)2/m

(21)
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Figure 3 Failure envelopes for brittle honeycombs withm=2 and various prescribed survival probabilities of 0.2, 0.5 and 0.8. The failure stresses
for both brittle crushing and fast brittle fracture increases significantly with decreasing prescribed survival probability while the failure stresses for
elastic buckling are not affected.

Figure 4 Failure envelopes for brittle honeycombs withm=4 and various prescribed survival probabilities of 0.2, 0.5 and 0.8. The areas contained
within the failure envelopes increase moderately with decreasing prescribed survival probability.
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Figure 5 Failure envelopes for brittle honeycombs withm=8 and various prescribed survival probabilities of 0.2, 0.5 and 0.8. The areas contained
within the failure envelopes increase slightly with decreasing prescribed survival probability.

Figure 6 Failure envelopes for brittle honeycombs withm=100 and various prescribed survival probabilities of 0.2, 0.5 and 0.8. The failure envelopes
for various survival probabilities come closer to a set of intersecting lines as suggested by the existing model [12] for ductile honeycombs.

4951



Figure 7 Failure envelopes for brittle honeycombs withm=2 and different cell sizes. The failure stresses of fast brittle fracture and brittle crushing
are higher for brittle honeycombs with a smaller cell size. There is no cell size effect for elastic buckling.

Figure 8 Failure envelopes for brittle honeycombs withm=4 and different cell sizes. Brittle honeycombs with a smaller cell size have higher failure
stresses for brittle crushing. There is no cell size effect for both elastic buckling and fast brittle fracture.
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Figure 9 Failure envelopes for brittle honeycombs withm=8 and different cell sizes. Brittle honeycombs with a smaller cell size have higher failure
stresses for brittle crushing but lower failure stresses for fast brittle fracture. There is no cell size effect for elastic buckling.

Figure 10 Failure envelopes for brittle honeycombs withm=100 and different cell sizes. The failure stresses of fast brittle fracture is lower for brittle
honeycombs with a smaller cell size. The cell size effect on brittle crushing and elastic buckling is negligible.
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Meanwhile, if c1= c2= c andc/`2= c/`, the failure
stresses for fast brittle fracture in honeycomb 1 can
also be rewritten as:

σ ∗1
σ f s
= 1

2(h/`+ sinθ )3/2

(
t

`

)2
√
`

c

(
`2

`1

)2/m−1/2

(22)
and

σ ∗2
σ f s
= 1

4
√

2 cos3/2 θ

(
t

`

)2
√
`

c

(
`2

`1

)2/m−1/2

(23)

The Euler buckling load of solid cell walls, however, de-
pends only on the relative density instead of the cell size
of brittle honeycombs. As a result, the failure stresses
for elastic buckling in brittle honeycombs exhibit no
cell size effect.

The failure surfaces of individual mechanisms in brit-
tle honeycombs with different cell sizes are plotted in
Figs 7–10 for various Weibull moduli. In the figures,
the cell size ratiò 1/`2 is set to be 0.1, 1.0 and 10, and
the cell geometry and material properties of the hon-
eycombs are assumed to bec/`=2, h/`=1, θ =30◦,
t/`=0.1 andσ f s/Es=1/100. Sincem>0 for solid
cell walls, the failure stresses for brittle crushing in hon-
eycombs with a smaller cell size is higher than those
with a larger cell size. However, the cell size effect
on the failure surfaces of brittle honeycombs decreases
when Weibull modulus becomes larger. Cell size ef-
fect is insignificant if Weibull modulus is much larger,
for instancem=100 in Fig. 10, as expected for ductile
honeycombs.

From Equations 22 and 23, it is found that the failure
surfaces for fast brittle fracture in brittle honeycombs
depend on the Weibull modulus of solid cell walls. The
failure stresses for fast brittle fracture increases with
decreasing cell size ifm is smaller than 4; Fig. 7 shows
the trend for the case ofm=2. Whenm=4, there is
no cell size effect on the failure surfaces for fast brittle
fracture as shown in Fig. 8. However, the failure stresses
for fast brittle fracture increases with increasing cell
size for brittle honeycombs withm>4 as shown in
Fig. 9 for the case ofm=8. It can be expected from
Equations 22 and 23 that the failure stresses for fast
brittle fracture in ductile honeycombs increases with
the square root of their cell size as illustrated in Fig. 10
for the case ofm=100.

5. Conclusions
The existing model for the failure envelopes of honey-
combs under in-plane biaxial loading has been modified
to take into account the effect of variability in the cell-
wall modulus of rupture. The variability in the cell-wall
modulus of rupture has been accounted for by assum-
ing that it follows a Weibull distribution. The Weibull
analysis suggests that the cell-wall modulus of rupture
depends on the volume and Weibull modulus of solid
cell walls, and the prescribed survival probability. The
cell-wall modulus of rupture increases with decreasing
prescribed survival probability, relative density and cell
size, leading to a cell size effect for the failure envelopes
of brittle honeycombs.

In addition, the failure envelopes for brittle honey-
combs under in-plane biaxial loading are presented for
various prescribed survival probabilities and Weibull
moduli. It is found that the areas contained within the
failure envelopes for brittle honeycombs increase with
decreasing prescribed survival probability. The failure
stresses for brittle honeycombs with a smaller Weibull
modulus will scatter more widely than those with a
larger Weibull modulus. As the Weibull modulus ap-
proaching infinity, the failure envelopes come closer to
a set of intersecting lines as suggested by the existing
model for ductile honeycombs.

Cell size effect is significant for brittle crushing and
fast brittle fracture in brittle honeycombs. The failure
stresses for brittle crushing increase with decreasing
cell size. The failure stresses for fast brittle fracture de-
crease with increasing cell size if the Weibull modulus,
m, of the cell wall material is less than 4; ifm=4, there
is no cell size effect; and ifm larger than 4, the failure
stresses increase with increasing cell size. Therefore,
the cell size effect on the failure envelopes of brittle
honeycombs under in-plane biaxial loading is impor-
tant and should be taken into account in microstructural
design and material selection for brittle honeycombs.
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