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in-plane biaxial loading

JONG-SHIN HUANG*, CHONG-YI CHOU
Department of Civil Engineering, National Cheng Kung University, Tainan, 70101 Taiwan
E-mail: jshuang@mail.ncku.edu.tw

The failure envelopes of brittle honeycombs are affected by the cell-wall modulus of
rupture. The variability in the cell-wall modulus of rupture is accounted for by assuming
that it follows a Weibull distribution, giving the corresponding modulus of rupture for a
prescribed survival probability. Furthermore, the existing model for the failure envelopes of
honeycombs under in-plane biaxial loading is modified to take into account the effect of
variability in the cell-wall modulus of rupture. Consequently, the failure envelopes of brittle
honeycombs with a prescribed survival probability are developed. The effects of cell size,
Weibull modulus and prescribed survival probability on the failure envelopes of brittle
honeycombs are also evaluated. © 1999 Kluwer Academic Publishers

1. Introduction guideline in analyzing the multiaxial failure envelopes
Cellular materials are increasingly used in many enfor brittle foams with more complicated cell geometry.
gineering applications such as thermal insulation, en- Gibsonretal. [1] observed that bending momentdom-
ergy absorption and fire resistance. Meanwhile, celluinates cell-wall deformation in honeycombs. Based on
lar materials are typically used as lightweight cores intheir cell-wall bending model, the in-plane linear elas-
sandwich structures, especially for load-bearing comtic properties of honeycombs were calculated and found
ponents. In practice, ceramic cellular cores are preferto be consistent with experimental measurements. For
able because of their high creep resistance and low thehoneycombs in uniaxial compression, cell walls fail
mal conductivity. For example, sandwich panels with aeither by elastic buckling when the maximum com-
cement foam core and gypsum faces are widely utilizeghressive stress exceeds their Euler buckling load or
in building construction. However, pre-existing flaws by crushing when the maximum tensile stress exceeds
within ceramic cellular materials resulting mainly from their modulus of rupture [1-8]. By assuming a con-
processing or machining might reduce their loading castant cell-wall modulus of rupture, the compressive
pacity and thus limit their application. Atthe same time, crushing strength of honeycombs was described well
the tensile and compressive strengths of ceramic cellly the cell-wall bending model proposed by Gibson
lar materials are significantly influenced by the flawand Ashby [9]. Elastic-buckling modes and combined
size distribution within them. As a result, the strengthelasto-plastic crushing for honeycombs were derived by
variability in ceramic cellular materials is expected andKlintworth and Stronge [10]. For honeycombs in uniax-
can be observed from experiments. ial tension, pre-existing cracks might cause catastrophic
In most cases, cellular materials in real engineerindailure at a tensile stress much less than the compres-
structures are subjected to a general multiaxial stateive crushing strength. Maigit al. [11] derived the ex-
of stress. Various failure mechanisms might occur forpression for mode | fracture toughness of honeycombs
brittle cellular materials under multiaxial loading, de- based on the near-tip singular tensile stress of a contin-
pending on the properties of solid cell walls. Account-uum model. They found that the fast fracture strength
ing for the cell-wall strength variability, brittle cellu- of honeycombs depends on cell size, relative density,
lar materials could have different failure mechanismsand cell-wall modulus of rupture.
and resulting failure envelopes which are essential to When honeycombs are under in-plane biaxial load-
the designer. Therefore, the failure envelopes for briting, various failure mechanisms including elastic buck-
tle cellular materials under multiaxial loading need toling, plastic yield and fast fracture were studied by Gib-
be fully exploited in order to suggest ways of enhanc-sonet al. [12]. They developed equations describing the
ing micro-structural design and material selection forfailure surfaces for honeycombs under in-plane biaxial
lightweight structures. Here, we aim at analyzing theloading. Huang and Lin [13] analyzed the mixed mode
failure envelopes for brittle honeycombs under in-plandracture for honeycombs under a combined loading of
biaxial loading due to the simple, repeated and regulauniform tensile and in-plane shear stresses, resulting
cellgeometry in honeycombs. The results can provide & a linear mixed-mode fracture criterion. The above
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studies assumed a constant cell-wall modulus of rup
ture, suitable for ductile honeycombs. In fact, the cell-
wall modulus of rupture in brittle honeycombs may vary
from one specimen to another, exhibiting strength vari-
ability. The strength variability in the cell-wall modulus
of rupture should be taken into account in developing
the failure envelopes for brittle honeycombs under in-,
plane biaxial loading.

Weibull [14] proposed an empirical formulation with
a simple statistic distribution to describe the strengtt xﬁ
variability in brittle materials such as concrete, wood
and glass fiber. It was found that a brittle solid with a
larger volume possesses a lower tensile strength the
that with a smaller volume; the difference in tensile
strengths depends on the brittleness of the solid, name
the Weibull modulus. Jayatilaka and Trustrum [15] ver-
ified that the empirical Weibull modulus is related to the
properties of cracks and flaws size distribution within
brittle solids. In addition, the survival probability of
a brittle solid subjected to a non-uniform tensile stress
can be calculated from the Weibull statistic analysis. For
example, Jayatilaka [16] calculated the survival prob-
ability of a brittle solid beam under bending moment

loading using the Weibull statistic analysis. Huang and \/ M, ‘\ P

Gibson [17] found that the cell-wall modulus of rupture
of brittle cordierite honeycombs was described well by
the Weibull statistic analysis with a Weibull modulus
of 6. Also, the cell-wall modulus of rupture depended
on the voIl_Jm_e of the pell wall, leading to a cell size P - \’
effect. A similar cell size effect on the mode Il frac- '

ture toughness of brittle honeycombs was presented by & M

Huang and Lin [13]. 0
In this paper, the strength variability in the cell-wall W

modulus of rupture is first studied using the Weibull

statistic analysis. Then, the failure surfaces character- ()

iZing brittle CrUShir_]g and faSt_brittle fra_Cture for bl’_i?- Figure 1 (a) An infinite honeycomb plate with a cell wall thickness
tle honeycombs with a prescribed survival probability an inclined cell lengttt, a vertical cell lengtth, a cell angled and a
are developed. Finally, the failure envelopes of brittlehoneycomb widttb under in-plane biaxial loading. (b) The forces and
honeycombs are plotted for various prescribed survivalpending moments exerted on an individual inclined cell wall.
probabilities, cell sizes and Weibull moduli.

The normal stress at a distanceyfrom the neutral
axis of the solid cell wall beam can be calculated from

2. Survival probability of brittle solid the elementary mechanics of materials:
cell walls

A typical honeycomb with a cell wall thicknessan
inclined cell length¢, a vertical cell lengthh, a cell
angled and a honeycomb widthis shown in Fig. la.
For simplicity, the principal stresses are assumed to be
aligned with thex; andx, axes. When the honeycomb e | — pt3/12 is the moment of inertia of the solid
is subjected to in-plane biaxial remote stressgand || wall beam.

o5, the forces and moments exerted on an individual For a brittle solid with a volume 0¥ subjected to

inclined cell wall are shown in Fig. 1b. Equilibrium re- 5 o yniform tensile stress, the failure probability of

quires thaW = o3¢bcost, P = oy(h+£sinf)band e solid can be calculated from the Weibull statistic
Mo = (P£sind — W{ cosd)/2. The external moment analysis [14,16]:

exerted on any cross-section at a distancernéasured
mdv
Pi = 1—exp[—/ <§> —] 3
v \oo/ Vo

from one end of the solid cell wall beam is:
— (Psing — Wcos@)(x _ é) (1) HereVoisaunitvolume (namely, 1 cfror 1 mn?), o
is the normal tensile stress acting at any point within

My _ 12(Psing — W cost)(x — Sy

o= bee 2)

M = Mg — P(¢ — x) sin6 + W(¢ — x) cosf
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the solid,oq is a scale parameter andlis the Weibull ~ Therefore, the corresponding cell-wall modulus of rup-
modulus. The magnitude of the Weibull modulus de-ture for a prescribed survival probabilif is found
scribing the brittleness of the solid depends on the flawo be:

size distribution within it; a solid with a smallen is Vi ¢ 1\Ym

more brittle. It should be noted that only tensile stresses o = [Z(m + 1)2<_0> <_) log <_>} 00
within the solid are taken into account in calculating the bez J\t Ps

failure probability of Equation 3. ©)

In most honeycombs, the tensile stress of an indiHere the volume of the solid cell-wall beanMs= ¢bt.
vidual inclined cell wall caused by bending moment isFrom Equation 9, it is known that the cell-wall modu-
much larger than that either by shear or by axial forceslus of rupture in brittle honeycombs is not a constant,
For simplicity, the failure probability of the solid cell- depending on the cell-wall volume, the material param-
wall beam can be obtained by substituting Equation Ztersm andoy of solid cell walls, and the prescribed

into 3, giving: survival probability.
The mean modulus of rupture of the solid cell wall
12(P sinf — W cosh) beam can be calculated from Equation 8 and found
Pr=1- exp{—/v [ bt3og to be:
e\ 1" dv _—/OOPd _/wex -1 (Vv
X X_Ey 70 O'fs—0 sUfs—o p2(m—|—1)2 Vo
. N m o m
_ 1 exp _ 2b[12(Psing — W cosh) " (j) :|d(7fs
Vo bt309 0o
¢ t/2 m Vo \ Y™ 1
N T B (L ) R
x=¢/2 Jy=0
1 Y Herel'(1+ m~1)is the gamma function. Then, the ratio
=1-exp T2m+ 12\ Vo of the cell-wall modulus of rupture for a prescribed
] " survival probability and the mean cell-wall modulus of
bt20q

ors _ [log(1/PIY™
SinceW = o3¢bcosd andP = o (h + £sind)b, the Ofs '+ 1/m)
above equation can be rewritten as:

1 \Y \"
P =1- - = {3 h/¢
f exp{ 2(m+1)2<V0)< t2> [( /
3. Survival probability of brittle honeycombs

. . (o] 2 o} " The existing model for the failure envelopes of hon-
+ sin6) siné o) ~° 4 ()  eycombs under in-plane biaxial loading [12] will be

modified to take into account the effect of variability
. . . in the cell-wall modulus of rupture. For brittle hon-
The maximum tensile stress of the solid cell-wall beam . o , ;
. : eycombs under in-plane biaxial loading, three failure
occurs at its both ends:

mechanisms are possible and will be considered here:

(11)

The ratio depends on the prescribed survival probability
and the Weibull modulus of solid cell-wall materials.

Mo(t/2) 2 brittle crushing, fast brittle fracture and elastic buck-
Omax = 037 =3 [o1(h/€ + sinp) sing ling. The mechanism of failure for brittle honeycombs

bt®/12 t depends on stress state. Since the cell-wall modulus of

— 0} cog 0] (6)  ruptureis notaconstant, the failure envelopes of brittle

honeycombs will be also affected by prescribed survival

By substituting Equation 6 into 5, the survival proba- probability and Weibull modulus of solid cell walls.
bility of the solid cell-wall beam can be expressed as:

1 V' /omac\™ 3.1. Brittle crushing
2+ 12 (Vo>< ) } When a brittle honeycomb is under in-plane biaxial

loading, the axial force acting on any cross-section of
(7)  an individual inclined cell wall isN = —(P cosd +
When the maximum tensile stress reaches the celW sing). Then, the resulting uniform axial stress is:
wall modulus of rupture ¢, failure occurs. By setting N
Omax = Ofs iN Equation 7, the survival probability of oa = bt
the solid cell-wall beam becomes:

0
. = —[o7'(h/€ + sing) cosh + o cosH sin@](—)
1 V Ofs t
ety () (%) | © 12)
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The critical skin stress occurs at both ends of the celktrength of the brittle honeycomb. A singular stress field
wall, contributed from both bending moment and ax-develops ahead of the crack tip, giving a local stress of:
ial force; the effect of shear force is negligible. Brit- .

tle crushing occurs when the critical skin tensile stress Olocal = o3y/mC (14)
reaches the cell-wall modulus of rupture for a given 27r

survw_al probability. Hence, the maximum tgnsﬂe Sf[resswherer is the distance ahead of the crack tip. The bend-
resulting from bending moment at failuredss — oy;

. : " . ingmoment exerted on the firstunbroken cell wall along
the bending moment can be either positive or negatwet.ne macrocrack plane is then:

From Equations 6, 9 and 12, the failure remote stresses
for brittle crushing are found to be:

£ cosd
M, = f OLocalP(£ cosf — r)dr
0

¢ 2

— * i H K 4

:|:3(t> [07(h/€ + sing) sind — o3 cos 6] _ #3b/E(E cO)? 5
32
Z * H * -
+ (f) [0 (h/¢€ + sin) cosd + o5 cosOSiNG]  The critical tensile stress on the first unbroken cell wall
is:
1/m

= 00| 2m+ 1P (g) 09 5,  Ma(t/2) _ 4V2o3(tcosn)PVe
be2 \ t Ps Ocritical = bt3/12 = v (16)

_ __[log(1/Po)1™

— (13) When the critical tensile stress exceeds the cell-wall

rd+1/m) modulus of rupture for a prescribed survival probability,
the firstunbroken cell wall fractures and the macrocrack

The relative density of the honeycomb (the density ofadvances one cell size distance, giving the remote stress

the honeycomb divided by that of the solid from whichit o5 at failure:

is made) is proportional to the ratio of the cell wall thick-

ness to length,/¢. From Equation 13, it is known that Vo \ /¢ 1\7Y¥m

the failure remote stresses for brittle crushing depend 03 = 0o [Z(m + 1)2( >( ) log (-)]

=) <
onthe cell size, relative density and Weibull modulus of be t Ps
the honeycomb, and the prescribed survival probability. 1 (t )2 14

- [z -

4/2cos2o\t/) Vc
1, 2

3.2. Fast brittle fracture [ (E) \/?
Fig. 2illustrates a brittle honeycomb plate with a central F'(1+1/m) 4/2cos26\¢ c
macro-crackg, subjected to a uniform remote tensile (17)

stressy; in thex, direction. The tensile strength of the

brittle honeycomb will be much lower than its brittle Simijlarly, the remote stress;" at failure in thex; di-
crushing strength due to the stress concentration effe¢gction can be obtained:
around the cracktip. The continuum model proposed by

Maiti et al. [11] is utilized here to calculate the tensile NAVAYL 1\1Y¥m
S

7 1 t 2\/7
T T T T T Xz(h/z+sin9)3/2<2> c
__[log(1/Ps))¥™ 1

ST 1/m) 2(h/¢ + sing)32

x(%)z ‘ (18)

Again, the remote stresse$ ando; at failure depend
on the Weibull modulus, cell size, relative density of the
honeycombs, and the prescribed survival probability.

3.3. Elastic buckling
Brittle honeycombs under either uniaxial or biaxial
i l« l »L \L compressive loading might fail due to the bucking of
J, one set of cell walls loaded axially up to their Euler
buckling load. The biaxial remote stresses in Fig. 1a
Figure 2 An infinite brittle honeycomb plate with a central macrocrack produce an axial load on the vertical cell wall of
c under a uniform remote tensile stressin the x, direction. 205 ¢bcosyd. When the axial load reaches the Euler
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TABLE | EndConstraintfacton? for elastic buckling of honeycombs  regardless of prescribed survival probability, cell size
[12] and relative density as the Weibull modulus approach-
ing infinity for ductile honeycombs.

¥ o 2 (mode 1 2 (mode 2 X .

o1/ " (mode 1) " (mode2) From Equations 13, 17, 18 and 19, it is known that
0 0.44 — the failure stresses for brittle crushing and fast brit-
13 0.419 0.648 tle fracture in brittle honeycombs are affected by cell
2 0.407 0.547 size, relative density, Weibull modulus and prescribed
! 0-370 0-370 survival probability while those for elastic bucklin

2 0.306 0.222 P! y : ; Ickiing
3 0.269 0.156 are only influenced by relative density. To investi-

gate the effect of prescribed survival probability on
the failure surfaces for brittle honeycombs under in-
plane biaxial loading, the Weibull modulus is first kept
fixed and three different prescribed survival probabil-
s e .3 - ities of 0.2, 0.5 and 0.8 are considered here. The re-
or. o m Bt _ n“w t sulting failure envelopes are plotted in Figs 3—6 for
2Buckling ™ 24¢h2coss ~ 24(/L)2cossd -\ £ brittle honeycombs with a Weibull modulus of 2, 4, 8
and 100, respectively. In the figures, the cell geometry
(19)  and material properties of brittle honeycombs are as-
sumed to beh/¢=1,0=30,c/¢=2,t/¢=0.1 and
i > .~ ots/Es=0.01. From Figs 3-5, it is seen that the area
constraintfacton depends on stress state and buckling.sniained within the failure envelopes for brittle hon-

mode; Gibsoret al. [12] presented a full analysis for oycomhs with a higher prescribed survival probability
two possible buckling modes and the corresponding €Nl sier than that with a lower prescribed survival

Cogﬁfgaei%feagﬁgfgﬂﬁﬁs gggi%IeSt;isdssséitlesbn 1 Probability. For a brittle honeycomb with a higher pre-
. 9 penas only cribed survival probability, the cell-wall modulus of

elastic modulus and slenderness of the individual cel upture will be smaller. As a result of that, the brit-

walls, the buckling strength of the honeycomb will N0t e honeycomb under a given biaxial stress state will

be affected by the Weibull modulus of solid cell walls pa mere likely to fail, giving a smaller area contained

and the prescribed survival probability. The end con-ithin the failure envelope.

straint factors for regular hexagonal honeycombs un-' rqm Figs 3-6, it is also seen that the difference be-
der biaxial loading suggested by Gibsetral. [12] are  yyeen the areas contained within the failure envelopes
listed in Table | and will be utilized to construct the ¢, \arigus survival probabilities becomes smaller as
failure envelopes for brittle honeycombs. the Weibull modulus increases. That s, for a prescribed
survival probability, the failure stresses for honeycombs
4. Discussions with same cell size and relative density but with a

Based on the above analysis, itis found that the cell-walfMaller Weibull modulus will scatter more widely than
modulus of rupture in brittle honeycombs depends orj'0S€ With a larger Weibull modulus. Itis expected that
the volume and Weibull modulus of solid cell walls, and t€ failure envelopes will come close to a set of inter-
the prescribed survival probability. Consider two brit- S€Cting lines when the Weibull modulus becomes much
tle honeycombs made from the same solid material byf2'9€" @s shown in Fig. 6 for honeycombs with same
with different cell size, relative density and prescribedWe'bu” mod_u_ll_Jsm = 100 butdifferent prescribed sur-
survival probability¢1, t; /¢ andPs 1 for honeycomb 1 Vival probabilities.

while €2, t/¢> and Ps » for honeycomb 2. From Equa- . Since the ceII—_wa_II quulus of rupture de;pends on
tion 9. the ratio of the cell-wall moduli of rupture for its volume, the biaxial failure stresses are different for

the two honeycombs is found to be: brittle honeycombs with various cell sizgs even though
they have same cell geometry and relative density. For
o beot P. 1/m instance, two brittle honeycombs have the same relative
fs,1 _ 22 | s,2 . . . .
[(W) (P—>] de_n.S|ty, Wel_bull modulus_and prescribed survival prob-
11 sl ability but different cell size; namely, /¢, =t/4> =

buckling load, elastic buckling occurs, giving the buck-
ling strength of the honeycomb:

HereE; is the elastic modulus of solid cell walls. End

0fs,2

, 2 to/ = 1/m t/€,hi/e1 =hy/lo =h/L,60 =60, =0, M =My =
— (_2> (ﬂ) log (ﬁ) (200 mandPsy = Ps; but¢y # €. The failure stresses
b)) \tu/ty Ps1 for brittle crushing in honeycomb 1 can be expressed
in terms of the cell-wall modulus of rupture in honey-
Both honeycombs have the same widthbolt is noted comb 2,0+s:
that the cell-wall modulus of rupture increases with de-
creasing cell size, relative density and prescribed sur- /2
vival probability. In other words, brittle honeycombs i3<¥> [07(h/€ + sing) sind — o3 cos 6]
with a lower prescribed survival probability, a smaller
cell size and a lower relative density will possess a

A _ . .
larger cell-wall modulus of rupture. Sinee is larger + (f>[01 (h/€ + sinG) coss + o7 cos sme]

than zero, the ratio in Equation 20 decreases when the 2/m
Weibullmodulus becomes larger. Equation 20 alsoindi-  _ Ufs<£_2> (21)
cates that the cell-wall modulus of rupture is a constant %1
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6=30°h/t=1c/t=2
t/£=0.10,/E, =001 002 2

Elastic Buckling

003— | s Ps=0.8

Figure 3 Failure envelopes for brittle honeycombs with= 2 and various prescribed survival probabilities of 0.2, 0.5 and 0.8. The failure stresses
for both brittle crushing and fast brittle fracture increases significantly with decreasing prescribed survival probability while the faikee fare

elastic buckling are not affected.

6=30"h/f=1c/t=2
t/£=0.1,0,/E, =001 0027 2

0.01
Fast Brittle Fracture

-0.01 \

I ' AT )
-0.03
Elastic Buckling i m=
PES—————— Ps=0.2
Ps=0.5
-0.03— | e Ps=08

Figure 4 Failure envelopes for brittle honeycombs with= 4 and various prescribed survival probabilities of 0.2, 0.5 and 0.8. The areas contained
within the failure envelopes increase moderately with decreasing prescribed survival probability.
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0=30h/t=1cll=2
t/£=0.10,/E, =001 0027 X2

0.01
Fast Brittle Fracture

-0.03
Elastic Buckling m=
7 T T PS=02
Ps=0.5
003— | et Ps=0.8

Figure 5 Failure envelopes for brittle honeycombs with= 8 and various prescribed survival probabilities of 0.2, 0.5 and 0.8. The areas contained
within the failure envelopes increase slightly with decreasing prescribed survival probability.

6=30°,h/L=1c/l=2
t/£=0.1,0,/E, =001 0027 =

Fast Brittle Fracture

-0.01 \

[ ! I ' |
-0.03 -0.02 / 0.01 0.02

s

0.01

Brittle Crushing

Elastic Buckling m=100

003— | -~ Ps=0.8

Figure 6 Failure envelopes for brittle honeycombs witl= 100 and various prescribed survival probabilities of 0.2, 0.5 and 0.8. The failure envelopes
for various survival probabilities come closer to a set of intersecting lines as suggested by the existing model [12] for ductile honeycombs.

4951



6=30°h/t=1clt=2
t/£=0.1,0,/E, =0.01 004 &2

Fast Brittle Fracture

0.02 —

-0.06 -0.04 0.02 0.04
a
/ ’ s
Elastic Buckling ]
-0.04 —
m=2
7 s ———— Zl /Zz =0.1
£,/¢,=1
-0.06 — [ £,/2,=10

Figure 7 Failure envelopes for brittle honeycombs with= 2 and different cell sizes. The failure stresses of fast brittle fracture and brittle crushing
are higher for brittle honeycombs with a smaller cell size. There is no cell size effect for elastic buckling.

0=30°h/t=1clt=2
t/£=0.1,0,/E, =001 0021 %2

0.01 ]
Fast Brittle Fracture

0.02 -0.01 \

| ' ' I ' |
-0.03 0.01 0.02
o
O
-0.01
a \
Brittle Crushing
-0.02
Elastic Buckling _ =4£ /. =04
..................... 1/1E,=
£,1¢2,=1
-0.03 — S £,/£,=10

Figure 8 Failure envelopes for brittle honeycombs with= 4 and different cell sizes. Brittle honeycombs with a smaller cell size have higher failure
stresses for brittle crushing. There is no cell size effect for both elastic buckling and fast brittle fracture.
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6=30°hlL=1clt=2

11£=01,0,/E, =001 0027 &
g
0.01 —

Fast Brittle Fracture

-0.01 Xﬂ '''' ]

l T | T J’ G -
o '/

Elastic Buckling | =8
................................... £,1¢,=0.1
£, 14, =
0037 | oo £,14,=10

Figure 9 Failure envelopes for brittle honeycombs with= 8 and different cell sizes. Brittle honeycombs with a smaller cell size have higher failure
stresses for brittle crushing but lower failure stresses for fast brittle fracture. There is no cell size effect for elastic buckling.

8=30°h/L=1c/0=2
t14=01,0,/E, =001 00271 &

Fast Brittle Fracture

—» ..... _!
J/
7 P L
-0.03 i 0.01 0.02
o
O-S
Brittle Crushing
Elastic Buckling i m=100
........................... £,/£,=0.1
0,14, =1
0.03— | T £,/1¢,=10

Figure 10 Failure envelopes for brittle honeycombs with= 100 and different cell sizes. The failure stresses of fast brittle fracture is lower for brittle
honeycombs with a smaller cell size. The cell size effect on brittle crushing and elastic buckling is negligible.
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Meanwhile, ifc; =c, =c andc/¢; =c/¢, the failure In addition, the failure envelopes for brittle honey-

stresses for fast brittle fracture in honeycomb 1 carcombs under in-plane biaxial loading are presented for

also be rewritten as: various prescribed survival probabilities and Weibull
moduli. It is found that the areas contained within the

of _ 1 (E)i/?(@)z/ml/z failure envelopes for brittle honeycombs increase with
ots  2(h/¢+sinp)32\ ¢ c\ {1 decreasing prescribed survival probability. The failure
and (22)  stresses for brittle honeycombs with a smaller Weibull
modulus will scatter more widely than those with a

o} 1 larger Weibull modulus. As the Weibull modulus ap-

(tNY <€2>2/m1/2

=—7 | - - — (23)  proaching infinity, the failure envelopes come closer to
2 . 1o -
ois  4v/2c0820 \ ! ¢\t a set of intersecting lines as suggested by the existing

The Euler buckling load of solid cell walls, however, de- Mmodel for ductile honeycombs. _
pends only on the relative density instead of the cell size Cell Size effect is significant for brittle crushing and
of brittle honeycombs. As a result, the failure stressedast brittle fracture in brittle honeycombs. The failure
for elastic buckling in brittle honeycombs exhibit no Stresses for brittle crushing increase with decreasing
cell size effect. cell size. The failure stresses for fast brittle fracture de-
The failure surfaces of individual mechanisms in brit- Cré@se with increasing cell size if the Weibull modulus,
tle honeycombs with different cell sizes are plotted in™ Of the cell wall material is less than 4y1f= 4, there
Figs 7—10 for various Weibull moduli. In the figures, 1S N0 cell size effect; and ih larger than 4, the failure
the cell size ratid/¢, is set to be 0.1, 1.0 and 10, and Stresses increase with increasing cell size. Therefore,

the cell geometry and material properties of the hon{he cell size effect on the failure envelopes of brittle

eycombs are assumed tot =2, h/¢ = 1,0 = 30°, honeycombs under in-plane biaxial loading is impor-
t/¢=0.1 andots/Es=1/100. Sincem> 0O for solid

tant and should be taken into account in microstructural

cellwalls, the failure stresses for brittle crushing in hon-d€sign and material selection for brittle honeycombs.

eycombs with a smaller cell size is higher than those
with a larger cell size. However, the cell size effect

on the failure surfaces of brittle honeycombs decreaseAcknowledgement _ _ _
fect is insignificant if Weibull modulus is much larger, Taiwan, R.O. C. under contract number NSC 87-2211-

for instancem = 100 in Fig. 10, as expected for ductile E006-059, is gratefully acknowledged.

honeycombs.
From Equations 22 and 23, it is found that the failure

surfaces for fast brittle fracture in brittle honeycombsReferences

depend on the Weibull modulus of solid cell walls. The =

failure stresses for fast brittle fracture increases with ,
decreasing cell size ih is smaller than 4; Fig. 7 shows
the trend for the case oh=2. Whenm=4, thereis 3.
no cell size effect on the failure surfaces for fast brittle 4
fracture as shownin Fig. 8. However, the failure stresses,
for fast brittle fracture increases with increasing cell g
size for brittle honeycombs witm > 4 as shown in

Fig. 9 for the case om=28. It can be expected from 7.
Equations 22 and 23 that the failure stresses for fast
brittle fracture in ductile honeycombs increases with 8.
the square root of their cell size as illustrated in Fig. 10
for the case om=100.

10.

5. Conclusions
The existing model for the failure envelopes of honey-

combs under in-plane biaxial loading has been modified?

to take into account the effect of variability in the cell- |

ing that it follows a Weibull distribution. The Weibull

analysis suggests that the cell-wall modulus of ruptureé®

depends on the volume and Weibull modulus of solid;
cell walls, and the prescribed survival probability. The
cell-wall modulus of rupture increases with decreasing
prescribed survival probability, relative density and cell
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